全国

热门城市 | 全国 北京 上海 广东

华北地区 | 北京 天津 河北 山西 内蒙古

东北地区 | 辽宁 吉林 黑龙江

华东地区 | 上海 江苏 浙江 安徽 福建 江西 山东

华中地区 | 河南 湖北 湖南

西南地区 | 重庆 四川 贵州 云南 西藏

西北地区 | 陕西 甘肃 青海 宁夏 新疆

华南地区 | 广东 广西 海南

  • 微 信
    高考

    关注高考网公众号

    (www_gaokao_com)
    了解更多高考资讯

  • 家长帮APP
    家长帮

    家长帮APP

    家庭教育家长帮

首页 > 高考总复习 > 高考数学复习方法 > 高中数学必修四知识点·不等式的解法平面向量立体几何
试题

资讯

试题

高中数学必修四知识点·不等式的解法平面向量立体几何

2019-03-14 16:50:12三好网

  不等式的解法:

  (1)一元二次不等式: 一元二次不等式二次项系数小于零的,同解变形为二次项系数大于零;注:要对 进行讨论:

  (2)绝对值不等式:若 ,则 ; ;

  注意:

  (1)解有关绝对值的问题,考虑去绝对值,去绝对值的方法有:

  ⑴对绝对值内的部分按大于、等于、小于零进行讨论去绝对值;

  (2).通过两边平方去绝对值;需要注意的是不等号两边为非负值。

  (3).含有多个绝对值符号的不等式可用“按零点分区间讨论”的方法来解。

  (4)分式不等式的解法:通解变形为整式不等式;

  (5)不等式组的解法:分别求出不等式组中,每个不等式的解集,然后求其交集,即是这个不等式组的解集,在求交集中,通常把每个不等式的解集画在同一条数轴上,取它们的公共部分。

  (6)解含有参数的不等式:

  解含参数的不等式时,首先应注意考察是否需要进行分类讨论.如果遇到下述情况则一般需要讨论:

  ①不等式两端乘除一个含参数的式子时,则需讨论这个式子的正、负、零性.

  ②在求解过程中,需要使用指数函数、对数函数的单调性时,则需对它们的底数进行讨论.

  ③在解含有字母的一元二次不等式时,需要考虑相应的二次函数的开口方向,对应的一元二次方程根的状况(有时要分析△),比较两个根的大小,设根为 (或更多)但含参数,要讨论。

  平面向量

  1.基本概念:

  向量的定义、向量的模、零向量、单位向量、相反向量、共线向量、相等向量。

  2. 加法与减法的代数运算:

  (1)若a=(x1,y1 ),b=(x2,y2 )则a b=(x1+x2,y1+y2 ).

  向量加法与减法的几何表示:平行四边形法则、三角形法则。

  向量加法有如下规律: + = + (交换律); +( +c)=( + )+c (结合律);

  3.实数与向量的积:实数 与向量 的积是一个向量。

  (1)| |=| |·| |;

  (2) 当 a>0时, 与a的方向相同;当a<0时, 与a的方向相反;当 a=0时,a=0.

  两个向量共线的充要条件:

  (1) 向量b与非零向量 共线的充要条件是有且仅有一个实数 ,使得b= .

  (2) 若 =( ),b=( )则 ‖b .

  平面向量基本定理:

  若e1、e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量 ,有且只有一对实数 , ,使得 = e1+ e2.

  4.P分有向线段 所成的比:

  设P1、P2是直线 上两个点,点P是 上不同于P1、P2的任意一点,则存在一个实数 使 = , 叫做点P分有向线段 所成的比。

  当点P在线段 上时, >0;当点P在线段 或 的延长线上时, <0;

  分点坐标公式:若 = ; 的坐标分别为( ),( ),( );则 ( ≠-1), 中点坐标公式: .

  5. 向量的数量积:

  (1).向量的夹角:

  已知两个非零向量 与b,作 = , =b,则∠AOB= ( )叫做向量 与b的夹角。

  (2).两个向量的数量积:

  已知两个非零向量 与b,它们的夹角为 ,则 ·b=| |·|b|cos .

  其中|b|cos 称为向量b在 方向上的投影.

  (3).向量的数量积的性质:

  若 =( ),b=( )则e· = ·e=| |cos (e为单位向量);

  ⊥b ·b=0 ( ,b为非零向量);| |= ;

  cos = = .

  (4) .向量的数量积的运算律:

  ·b=b· ;( )·b= ( ·b)= ·( b);( +b)·c= ·c+b·c.

  6.主要思想与方法:

  本章主要树立数形转化和结合的观点,以数代形,以形观数,用代数的运算处理几何问题,特别是处理向量的相关位置关系,正确运用共线向量和平面向量的基本定理,计算向量的模、两点的距离、向量的夹角,判断两向量是否垂直等。由于向量是一新的工具,它往往会与三角函数、数列、不等式、解几等结合起来进行综合考查,是知识的交汇点。

  立体几何

  1.平面的基本性质:掌握三个公理及推论,会说明共点、共线、共面问题。

  能够用斜二测法作图。

  2.空间两条直线的位置关系:平行、相交、异面的概念;

  会求异面直线所成的角和异面直线间的距离;证明两条直线是异面直线一般用反证法。

  3.直线与平面

  ①位置关系:平行、直线在平面内、直线与平面相交。

  ②直线与平面平行的判断方法及性质,判定定理是证明平行问题的依据。

  ③直线与平面垂直的证明方法有哪些?

  ④直线与平面所成的角:关键是找它在平面内的射影,范围是

  ⑤三垂线定理及其逆定理:每年高考试题都要考查这个定理. 三垂线定理及其逆定理主要用于证明垂直关系与空间图形的度量.如:证明异面直线垂直,确定二面角的平面角,确定点到直线的垂线.

  4.平面与平面

  (1)位置关系:平行、相交,(垂直是相交的一种特殊情况)

  (2)掌握平面与平面平行的证明方法和性质。

  (3)掌握平面与平面垂直的证明方法和性质定理。尤其是已知两平面垂直,一般是依据性质定理,可以证明线面垂直。

  (4)两平面间的距离问题→点到面的距离问题→

  (5)二面角。二面角的平面交的作法及求法:

  ①定义法,一般要利用图形的对称性;一般在计算时要解斜三角形;

  ②垂线、斜线、射影法,一般要求平面的垂线好找,一般在计算时要解一个直角三角形。

  ③射影面积法,一般是二面交的两个面只有一个公共点,两个面的交线不容易找到时用此法。

[标签:高考资讯 复习指导]

分享:

高考院校库(挑大学·选专业,一步到位!)

高考院校库(挑大学·选专业,一步到位!)

高校分数线

专业分数线

高考关键词